Enhancing SVM with visualization

Thanh-Nghi DO, François POULET dtnghi@lri.fr, poulet@esiea-ouest.fr Outline of talk

introduction

SVM algorithms

* proximal SVM (PSVM)

* reduced SVM (RSVM)

enhancing SVM with visualization

multiple views

cooperation Viz-RSVM for classification

- * pre-processing for large data sets
- interpreting SVM results

numerical test results

conclusion and future work

SVM algorithms

proximal SVM (PSVM)

reduced SVM (RSVM)

enhancing SVM with visualization

multiple views

cooperation Viz-RSVM for classification

- * pre-processing for large data sets
- interpreting SVM results
- numerical test results
- conclusion and future work

- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Introduction

data in the world increase rapidly

- WalMart: 20M transactions/day
- Google: 70M researches/day
- AT&T: 275M calls/day

data mining

- necessary
- discover knowledge in large databases
- algorithms: decision tree, clustering, association rules, support vector machines (Vapnik, 1995), etc.

- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Introduction

support vector machines

- optimal surface for separating data into two classes
- classification, regression, novelty detection.
- successful applications: face identification, text categorization, bioinformatics, etc
- but <u>SVM results: incomprehensible</u>

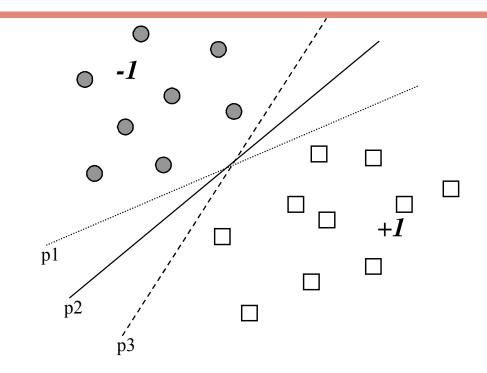
contribution

- enhancing SVM with visualization
- classification task
- interpreting SVM results

SVM algorithms

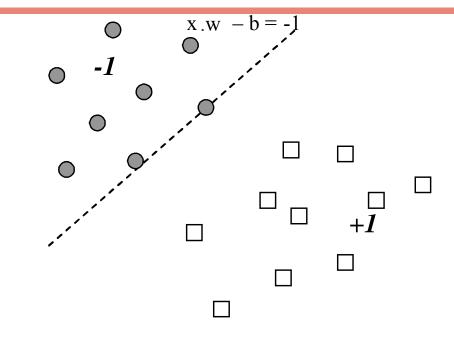
- * proximal SVM (PSVM)
- reduced SVM (RSVM)
- enhancing SVM with visualization
 - multiple views
 - cooperation Viz-RSVM for classification
 - pre-processing for large data sets
 - interpreting SVM results
- numerical test results
- conclusion and future work

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

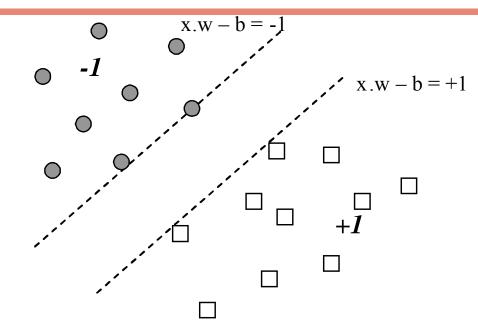


how to find optimal separating plane (w, b)
 classify m points x₁, x₂, ..., x_n in n-dimensions into 2 classes ±1

- introduction
- **SVM algorithms**
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

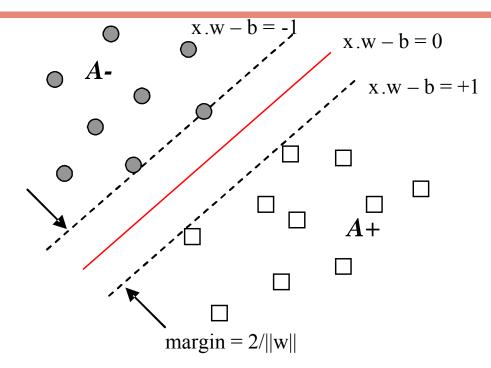


- introduction
- **SVM algorithms**
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

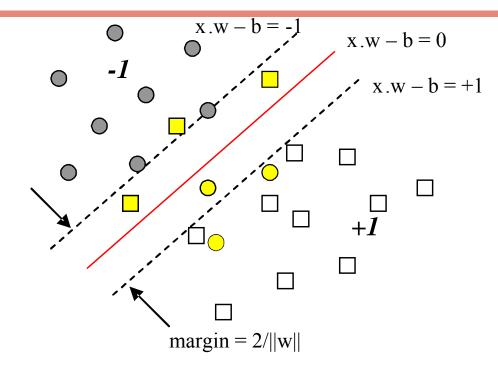


- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Support Vector Machines



- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work



■ soft margin: errors are allowed

- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

maximizing margin + minimizing errors

- be accomplished through quadratic program
- solution: w, b

SVM algorithm

classify new x: sign (x.w - b)

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
 - conclusion and future work

Proximal SVM (Fung & Mangasarian, 2001)

PSVM changes:

- inequality constraints to equalities
- maximizing margin to min (1/2) $||w, b||^2$
- minimizing least squares 2-norm errors
- **PSVM** = solution of linear system (n+1) variables (w,b)
 - instead of quadratic program solution
 - very fast to train
- non linear PSVM
 - kernel matrix K with mxm size (m: nb. data points)
 - high cost (memory, time)

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

RSVM (Lee & Mangasarian, 2000)

reducing problem size

- using random data points (size r) from whole dataset
- creating kernel matrix K with mxr size (r << m)
- drastically reducing cost
- comparable solution

using random subset r as support vectors : not clear
no idea for creating kernel matrix

SVM algorithms

- proximal SVM (PSVM)
- reduced SVM (RSVM)

enhancing SVM with visualization

- multiple views
- cooperation Viz-RSVM for classification
- pre-processing for large data sets
- interpreting SVM results
- numerical test results
- conclusion and future work

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Cooperation visualization-RSVM

visualizing dataset

select support vectors for RSVM

• brushing data points close to separating boundary

overview of data found by appropriate visualization

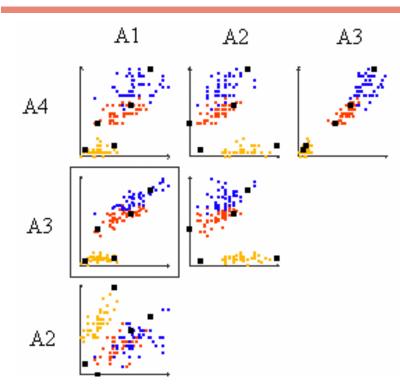
• some idea for choosing & tuning kernel

interpreting SVM results with multi-view

- improving model comprehensibility
- detecting interesting dimensions

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Multi-view, linking, brushing



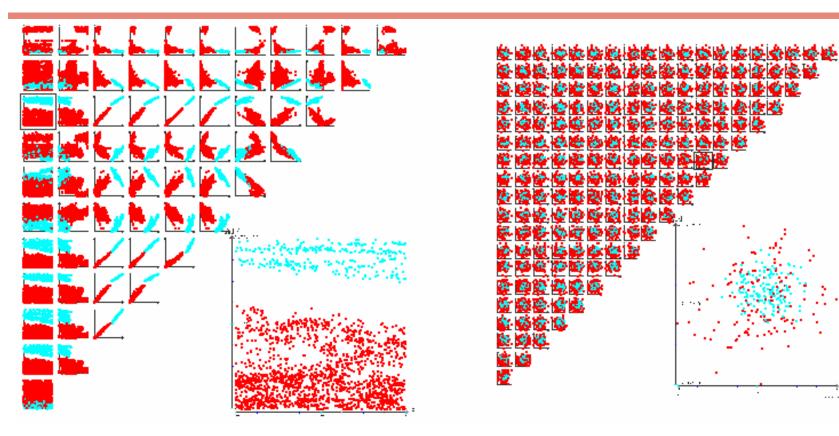
A1 A2 A3 A4

- 2D scatter-plot matrices
 - 2D projections
 - \bullet color = class

- parallel coordinates
 - point => polyline
 - color = class

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Getting overview of data



view of dataset1

- linear separating
- linear classification task

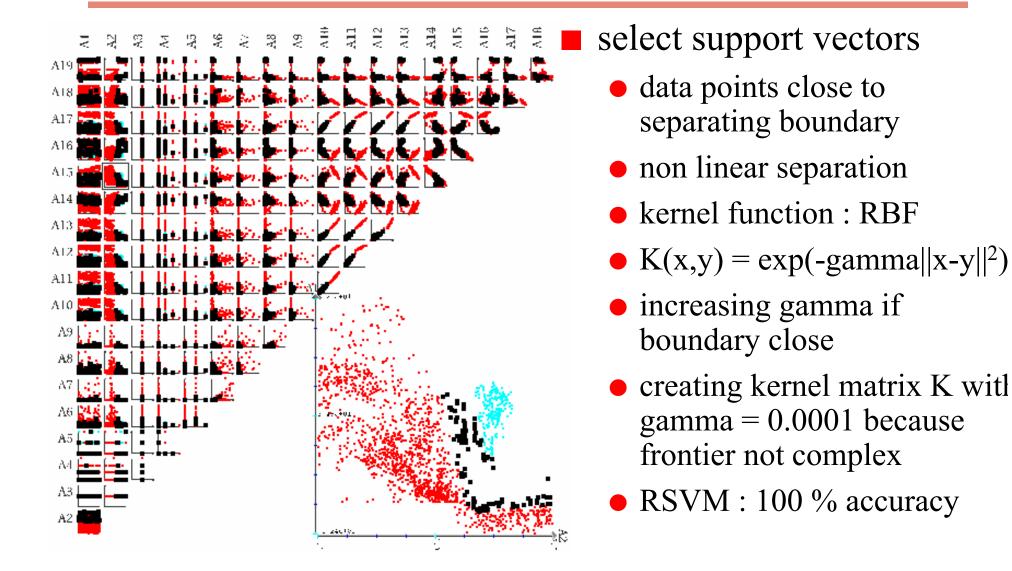
- view of dataset2
 - non linear separating
 - non linear classification task

Interactive brushing support vectors

(separating 6 "cyan" against all "red" of Segment dataset, 2310 points, 19 dims, 7 classes)

introduction

- SVM algorithms
- enhancing SVM with visualization
- numerical test results
 - conclusion and future work



 introduction
 SVM algorithms
 <u>enhancing SVM with visualization</u> numerical test results
 conclusion and future work

Pre-processing for mining large datasets

large number points

- creating clusters with SOM or K-Means
- sampling subset from clusters

large number dimensions

- feature selection by 1-norm SVM
- getting dimension subset

Classification on large nb. points (separating 2 against all of Forest dataset, 581012 points, 54 dims, 7 classes)

introduction
 SVM algorithms
 <u>enhancing SVM with visualization</u>
 numerical test results

conclusion and future work

- SVMTorch has used 100,000 training, 50,000 testing
 2 days 5 hours with 83.24 % accuracy (on Athlon 1.2 GHz)
- we have used 500,000 training, 50,000 testing
 - LibSVM has not finished learning task after several days
 - created 200 clusters with SOM
 - sampled 10,000 points from clusters
 - Viz-RSVM has finished learning task in 8 hours (on P-4, 2.4 GHz)
 - with 84.32 % accuracy

Classification on large nb. dims (bio-medical datasets)

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

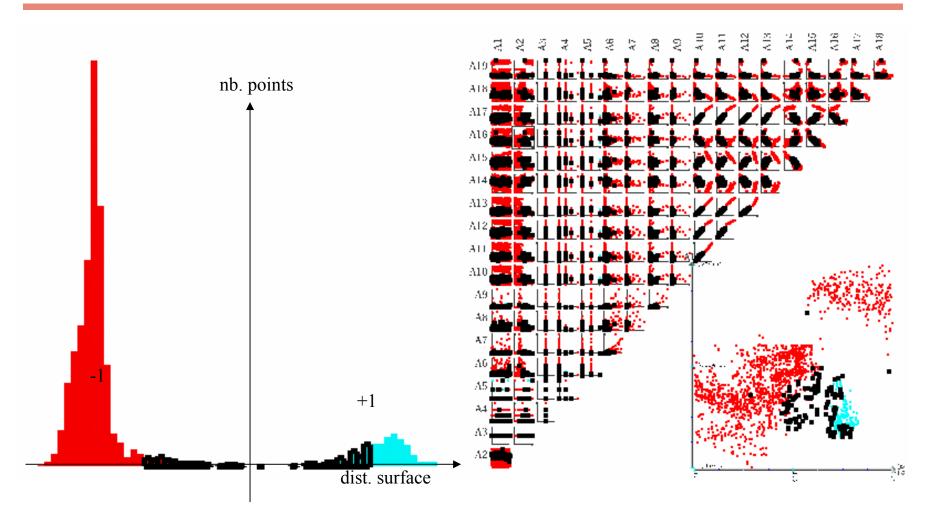
	Accuracy of +1		Accuracy of -1		Accuracy	
	Feature	No	Feature	No	Feature	No
	selection	selection	Selection	selection	selection	Selection
AML-ALL	100 %	95 %	85.71 %	92.86 %	94.12 %	94.12 %
Leukemia	5-D	7129-D	5-D	7129-D	5-D	7129-D
Breast	91.67 %	83.33 %	57.14 %	57.14 %	78.95 %	73.68 %
Cancer	10-D	24481-D	10-D	24481-D	10-D	24481-D
Colon	95.45 %	86.36 %	97.5%	92.5%	96.77 %	90.32 %
Tumor	19-D	2000-D	19-D	2000-D	19-D	2000-D
Lung	100 %	100 %	96.27 %	98.51 %	96.64 %	98.66 %
Cancer	9-D	12533-D	9-D	12533-D	9-D	12533-D
Ovarian	100 %	100 %	100 %	100 %	100 %	100 %
Cancer	13-D	15154-D	10-D	15154-D	13-D	15154-D

- feature selection is best (except Lung Cancer data)
 - interesting dimensions
 - visualizing results

Interpreting SVM results

- visualizing separating boundary
- detecting interesting dimensions

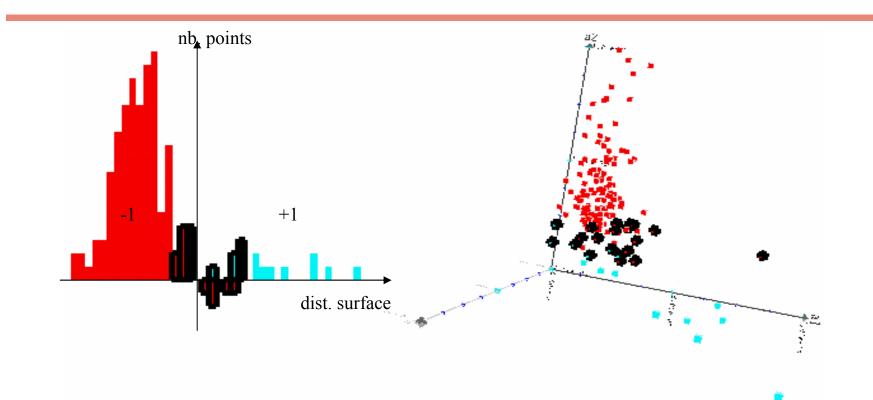
- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work



• 2D scatter-plot matrices

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Visualizing result (Lung Cancer, 149 points, 12533 dims, 2 classes)



- feature selection by 1-norm SVM
 - need only 9 dims for classification
 - 3D view presents clearly separating boundary
 - 3 corresponding dimensions are interesting result

SVM algorithms

* proximal SVM (PSVM)

reduced SVM (RSVM)

enhancing SVM with visualization

multiple views

cooperation Viz-RSVM for classification

- pre-processing for large data sets
- interpreting SVM results

numerical test results

conclusion and future work

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Performances evaluation

	Classes	Points	Attributes	Evaluation method
Bupa	2	345	6	10-fold
Pima	2	768	8	10-fold
Twonorm	2	7400	20	300 trn – 7100 tst
Ringnorm	2	7400	20	300 trn – 7100 tst
Segment	7	2310	19	10-fold
Satimage	6	6435	36	4435 trn - 2000 tst
Forest	7	581012	54	500000 trn - 50000 tst

software program

- our cooperative method Viz-RSVM
- automatic SVM algorithm LibSVM

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- conclusion and future work

Results

	Viz-RSVM	LibSVM
Bupa	76.18 %	73.62 %
Pima	78.86 %	77.34 %
Twonorm	97.28 %	97.35 %
Ringnorm	97.15 %	97.28 %
Segment	96.02 %	97.10 %
Satimage	91.70 %	92.05%
Forest	84.32 %	N/A

Viz-RSVM gives good results compared with LibSVM

- kernel construction is helped by human pattern recognition capacities + visualization
- gaining insight into classification task with visualization
- understanding results

SVM algorithms

* proximal SVM (PSVM)

reduced SVM (RSVM)

enhancing SVM with visualization

multiple views

cooperation Viz-RSVM for classification

- * pre-processing for large data sets
- interpreting SVM results
- numerical test results

conclusion and future work

Conclusion

enhancing SVM with visualization method

- selecting support vectors
- providing some idea for kernel construction
- interpreting results
- looking inside SVM "black box"
- comparable solution with automatic algorithm
- pre-processing for large datasets

- introduction
- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- <u>conclusion and future work</u>

- SVM algorithms
- enhancing SVM with visualization
- numerical test results
- **conclusion and future work**

Future work

better use of user domain knowledge for mining task
extract useful rules for interpreting SVM results
mining large datasets via symbolic objects

