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Introduction

Support vector machines (SVM)
A class of machine learning algorithms 
Try to find the optimal hyper-plane for separating furthest from 
2 classes  (can be extended for multi-class)
Use the idea of kernel substitution 
Most accurate models
Deal with many tasks: classification, regression and novelty 
detection
Applications: face recognition, handwritten characters 
recognition, text classification, bioinformatics, etc.
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Introduction

Support vector machines (SVM)
Geometrical and mathematical approach
SVM + kernel function (lin, poly, rbf, sigmoïd) => model
Training task: quadratic programming
Convex problem: global minima
Sparse model: support vectors
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Notations

n: number of attributes (dimensions)
m: nomber of examples
example-i and its class: xi, yi (i=1,m)
Amxn: m examples in n dimensions
xT : transpose of x
w, b : hyper-plane
||w|| : 2-norm of the vector w
dot product of two vectors u, v : u.v, uTv
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■ supporting plane for class -1: 
● xi

Tw – b ≤ – 1 for yi = -1 
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■ supporting plane for class +1: 
● xj

Tw – b ≥ +1 for yj = +1 
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xTw – b = +1

xTw – b = -1
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■ supporting plane for class -1:

● xi
Tw – b ≤ – 1    for  yi = -1

■ supporting plane for class +1 :
● xj

Tw – b ≥ + 1   for  yj = +1 

yi(xi
Tw – b) ≥ + 1



SVM

xTw – b = 0

xTw – b = +1

xTw – b = -1

margin = 2/||w||

24

Distance between two supporting planes: margin

SVM aims to maximize the margin (biggest margin => safest model)
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SVM

Maximizing the margin

Solving QP (1): w, b
Classifying a new example x: predict(x) = sign(w.x - b)

predict(x) = 1 if w.x – b > 0
predict(x) = -1 if w.x – b < 0
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Introduction

Support vector regression (SVR)

Training algorithms of local SVRs

Numerical test results

Conclusions and future work

Support vector machines - SVM (Vapnik, 95)

Maximizing margin and minimizing errors

I quadratic programming (1)

min f (w , b) = (1/2)kwk2

s.t. yi (w .xi � b) � 1 8i = 1, 2, ...,m
(1)

Classify a new datapoint x

I predict(x) = sign(w .x � b)

Le Diem Bui Training algorithms of local SVR for large datasets 14/ 56



SVM

Dual formula (Lagrange multipliers ai) of QP (1) :

Solving QP (2) : ai >0 (xi: support vector)
and b = ½(w.xp + w.xq) 

with xp (+1) and xq (-1) are support vectors
Classifying a new example x, 
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Introduction

Support vector regression (SVR)

Training algorithms of local SVRs

Numerical test results

Conclusions and future work

Support vector machines - SVM (Vapnik, 95)

Maximizing margin and minimizing errors

I Lagrangian dual of (1)

min �(↵) = (1/2)
mX

i=1

mX

j=1

yiyj↵i↵jhxi · xji �
mX

i=1

↵i

s.t.

8
><

>:

mX

i=1

yi↵i = 0

0  ↵i 8i = 1, 2, ...,m

(2)

with Lagrange multipliers ↵i

Le Diem Bui Training algorithms of local SVR for large datasets 15/ 56
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Support vector regression (SVR)

Training algorithms of local SVRs

Numerical test results

Conclusions and future work

Support vector machines - SVM (Vapnik, 95)

Classify a new datapoint x

predict(x) = sign(
#SVX

i=1

yi↵i hx · xi i � b)

Model = SVM + kernel function K hxi , xji

I linear: xi .xj
I degree d polynomial: (xi .xj + 1)d

I RBF (Radial Basis Function): e��kxi�xjk2

Le Diem Bui Training algorithms of local SVR for large datasets 16/ 56
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SVM aims to maximize the margin and minimize errors



SVM

Maximizing the margin and minimizing errors

(3)

Solving QP (3) : w, b
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Introduction

Support vector regression (SVR)

Training algorithms of local SVRs

Numerical test results

Conclusions and future work

Support vector machines - SVM (Vapnik, 95)

Maximizing margin and minimizing errors

I quadratic programming (1)

min f (w , b, z) = (1/2)kwk2 + C
mX

i=1

zi

s.t.

⇢
yi (w .xi � b) + zi � 1
zi � 0 8i = 1, 2, ...,m

(1)

Classify a new datapoint x

I predict(x) = sign(w .x � b)

Le Diem Bui Training algorithms of local SVR for large datasets 14/ 56



SVM

Dual formula (Lagrange multipliers ai) of QP (3) :

(4)

Solving QP (4) : ai >0 (xi: support vector)
and b = ½(w.xp + w.xq) 

with xp (+1) and xq (-1) are support vectors
Classifying a new example x, 
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Original input space 2-d (d1, d2), mapping operation Φ(d1, d2) =>

feature space in 5-d, (d1, d2, d1.d2, d1
2, d2

2) 

Linear SVM in feature space => non-linear SVM in original input space

d1

d2 d2

d1
2

Non-linear SVM
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QP (4) => QP (5)

(5)

Dimensionality of the feature space explodes exponentially            
=> overfitting 

How to do mapping operation Φ

Non-linear SVM
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Support vector regression (SVR)

Training algorithms of local SVRs

Numerical test results

Conclusions and future work

Support vector machines - SVM (Vapnik, 95)

Maximizing margin and minimizing errors

I Lagrangian dual of (1)

min �(↵) = (1/2)
mX

i=1

mX

j=1

yiyj↵i↵j�(xi ) · �(xj)�
mX

i=1

↵i

s.t.

8
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0  ↵i  C 8i = 1, 2, ...,m
(2)

with Lagrange multipliers ↵i

Le Diem Bui Training algorithms of local SVR for large datasets 15/ 56
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Mercer theorem: for certain mappings Φ and any two examples u, v, 
the dot product Φ(u).Φ(v) is evaluated using the kernel function 
without ever explicitly knowing the mapping, Φ(u).Φ(v) = K(u, v)

QP (5) => QP (6)

(6)

Classifying a new example x,                                         

Non-linear SVM
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Training algorithms of local SVRs

Numerical test results

Conclusions and future work

Support vector machines - SVM (Vapnik, 95)

Maximizing margin and minimizing errors

I Lagrangian dual of (1)

min �(↵) = (1/2)
mX

i=1

mX

j=1

yiyj↵i↵jK hxi , xji �
mX

i=1

↵i

s.t.

8
><

>:

mX

i=1

yi↵i = 0

0  ↵i  C 8i = 1, 2, ...,m

(2)

with Lagrange multipliers ↵i , kernel function K hxi , xji

Le Diem Bui Training algorithms of local SVR for large datasets 15/ 56
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Most popular kernel functions (Hilbert Schmidt kernels)

Polynomial kernel function with degree 5, mapping examples in 250
dimensions in input space  to ~ 1010 dimensions in feature space

Non-linear SVM
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Training SVM model = Solving QP

36

Existing general-purpose QP algorithms: Quasi-Newton methods, 
primal-dual interior point methods, MINOS (Murtagh et Saunders, 
1992) or LOQO (Vanderbei, 2000), for handling problems of small 
size (thousands)

KernelAdatron (Friess et al., 1998) is to evaluate and to discard 
kernel components for sequentially updating the Lagrange 
multipliers with a gradient method (easy to implement, long training 
time, thousands)
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Chunking: optimize the objective function using an initial subset of 
data. The support vectors (corresponding to αi > 0) are kept and other 
examples (with αj = 0) are discarded. A new working set for the next 
iteration includes these support vectors and additional examples which 
maximally violate the constraints. This process is iterated until all 
Karush-Kuhn-Tucker conditions being satisfied => intractable for large 
number of support vectors

Decomposition: use a fixed size subset of data with the support 
vectors for the remainder kept fixed

SVMLight (Joachims, 1998), LibSVM (Chang and Lin, 2011), SMO 
(Platt, 1998): chunking/decomposition

Reformulate SVMs, including LS-SVM (Suykens, 1999), 
Lagrangian SVM (Mangasarian, 2001), etc.

Training SVM model = Solving QP

Introduction

SVM

Applications

Conclusion

Demo



38

One-versus-All 

k classes => training k binary SVM models where the i-th binary 
one separates the i-th class from the rest 

The class is then predicted with the largest distance vote

Combining SVMs for Classifying Fingerprint Images 5

margin =

2
kwk

optimal hyperplane

hw.xi � b = 0

hw.xi � b = �1

hw.xi � b = +1

zj

y = +1

y = �1

zi

support vector

Figure 2. Classification of the datapoints into two classes
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Figure 3. Multi-class SVM (One-Versus-All)
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Figure 4. Multi-class SVM (One-Versus-One)

SVM for multi-class (k > 2)
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SVM for multi-class (k > 2)
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One-versus-One

k classes => training k(k-1)/2 binary SVM models for all the binary 
pairwise combinations of the k classes

The class is then predicted with the largest distance vote
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Regression

40

Try to find a best hyper-plane that has at most ε deviation 
from the target value yi

Training the regression model: solving QP

Non-linear regression: kernel substitution
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w.x – b = 0

w.x – b = ε

w.x – b = -ε



Novelty detection
(one-class SVM)

41

Try to find a hypersphere with a minimal radius R and center o
which contains most of examples => novel test examples lie 
outside the boundary of this hypersphere.

Training the one-class model: solving QP

Non-linear model: kernel substitution

Introduction

SVM

Applications

Conclusion

Demo



Content

Introduction
SVM learning algorithm

classification
other tasks

Applications of SVM
Conclusions 
Demo 



Applications of SVM

43

Website (Guyon, 1999) 

http://www.clopinet.com/isabelle/Projects/SVM/applist.html

Pattern recognition: audio, image, handwritten characters,

Text classification,

Time series mining,

Gene expression classification,

Data analysis, 

etc.
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Handwritten digit recognition
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Dataset US Postal Service 
(LeCun et al., 1989)

45

9298 images (16x16), handwritten digits scanned from envelopes 
by the U.S. Postal Service

Performing the pre-processing stage

7291 for trainset, 2007 for testset 

Difficult (Bromley & Sackinger, 1991): 2,5 % error rate
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Dataset MNIST 
(LeCun et al., 1998)

46

Subset of NIST (the National Institute of Standards and 
Technology), 70000 images (28x28), handwritten digits

60000 for trainset, 10000 for testset  
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Text classification

47

Classifying spams,

Classifying news

Dataset reuters-21578 (Lewis, 1987)

Text representation: Bag-of-words

Removing stop words: the, a, an, of, and, etc.

Stemming words: drug, drugs, drugged, etc.

Text: vector of word frequencies => #dim = #vocab

Classifying a news into one of classes (earn, acq, money-fx, grain, 
crude, trade, interest, ship, wheat, corn, etc.)
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Text classification: reuters-21578
(Dumais, 1998)
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Gene expression classification

49

DNA microarrays are microscope slides that are printed with 
thousands of tiny spots in defined positions, with each spot containing a 
known DNA sequence or gene. Often, these slides are referred to as 
gene chips or DNA chips. The DNA molecules attached to each slide 
act as probes to detect gene expression, which is also known as the 
transcriptome or the set of messenger RNA (mRNA) transcripts 
expressed by a group of genes.

mRNA molecules are typically collected from both an experimental 
sample and a reference sample. For example, the reference sample 
could be collected from a healthy individual, and the experimental 
sample could be collected from an individual with a disease like cancer. 

Classifying gene expression: patients/normal
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Bio-medical datasets
(Jinyan & Huiqing, 2002)
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Classifying very-high-dimensional data with random forests of oblique decision trees 9

3.1 Experiments setup

The experimental setup used fifteen very-high-dimensional datasets from the Bio-
medical repository [Jinyan and Huiqing, 2002] and ten standard datasets from UCI
[Asuncion and Newman, 2007] and Statlog [Michie et al., 1994] repositories.

In order to evaluate performance for binary classification tasks, we pre-processed
multi-class (more than two classes, denoted by an asterisk in the tables 1 and 2)
datasets as two-class problems. In the tables 1 and 2 the fourth column shows how
we convert multi-class to two-class ( for example with the OpticDigits dataset, the
digit ”0” is mapped to the +1 class and the remaining digits are considered as the
-1 class). The performance of the classification algorithms is analyzed in terms of
precision, recall, F1-measure and accuracy. The test protocols are presented in the
last column of the tables 1 and 2. With datasets having training set (trn) and testing
set (tst) available, we used the training data to tune the parameters of the algorithms
for obtaining a good accuracy in the learning phase. For Random forests, we tuned
the number of trees in the forests and the number of random attributes at each node
splitting. For LibSVM, we tuned the positive constant c for tradeoff of errors and
the margin size (c = 105 for the 15 high dimensional datasets). Then the obtained
model is evaluated on the test set. If the training set and testing set are not available
then we used cross-validation protocols to evaluate the performance. With datasets
having less than three hundred datapoints, the test protocol is leave-one-out cross-
validation (loo). It involves using a single datapoint from the dataset as the testing
data and the remaining datapoints as the training data. This is repeated such that
each datapoint in the dataset is used once as the testing data. With dataset having
more than three hundred datapoints, 10-fold cross-validation is used to evaluate the
performance. The dataset is partitioned into 10 folds. A single fold is retained as
the validation set, and the remaining 9 folds are used as training data. The cross-
validation process is then repeated 10 times (folds). The results from the 10 folds
are then averaged to produce the final result.

Table 1 Description of very-high-dimensional datasets
ID Datasets #Datapoints #Dimensions Classes Protocols

1 Colon Tumor 62 2000 tumor, normal loo
2 ALL-AML-Leukemia 72 7129 ALL, AML trn-tst
3 *MLL-Leukemia 72 12582 MLL, rest trn-tst
4 Breast Cancer 97 24481 relapse, non-relapse trn-tst
5 Duke Breast Cancer 42 7129 cancer, normal loo
6 Prostate Cancer 136 12600 cancer, normal trn-tst
7 Lung Cancer 181 12533 cancer, normal trn-tst
8 Central Nervous System 60 7129 positive, negative loo
9 Translation Initiation Site 13375 927 positive, negative 10-fold

10 Ovarian Cancer 253 15154 cancer, normal loo
11 Diffuse Large B-Cell Lymphoma 47 4026 germinal, activated loo
12 *Subtypes of Acute Lymphoblastic (Hyperdip) 327 12558 Hyperdip, rest trn-tst
13 *Subtypes of Acute Lymphoblastic (TEL-AML1) 327 12558 TEL-AML1, rest trn-tst
14 *Subtypes of Acute Lymphoblastic (T-ALL) 327 12558 TEL-ALL, rest trn-tst
15 *Subtypes of Acute Lymphoblastic (Others) 327 12558 Others, diagnostic groups trn-tst



Classification of bio-medical datasets
(Do et al., 2009)
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Classifying very-high-dimensional data with random forests of oblique decision trees 11

Table 3 Parameter values of random forest algorithms

ID Datasets #Random dimensions #Trees
1 Colon Tumor 100 200
2 ALL-AML-Leukemia 100 300
3 *MLL-Leukemia 500 100
4 Breast Cancer 100 500
5 Duke Breast Cancer 200 500
6 Prostate Cancer 250 100
7 Lung Cancer 250 100
8 Central Nervous System 500 100
9 Translation Initiation Site 150 200

10 Ovarian Cancer 500 100
11 Diffuse Large B-Cell Lymphoma 150 200
12 *Subtypes of Acute Lymphoblastic (Hyperdip) 150 500
13 *Subtypes of Acute Lymphoblastic (TEL-AML1) 150 500
14 *Subtypes of Acute Lymphoblastic (T-ALL) 200 100
15 *Subtypes of Acute Lymphoblastic (Others) 500 500
16 Bupa 4 50
17 Breast Cancer Wisconsin 10 50
18 Pima 5 50
19 *Segment 10 50
20 Spambase 20 50
21 *Opticdigits 20 50
22 *Satimage 6 200
23 *Pendigits 8 50
24 *Letters 8 50
25 *Shuttle 5 50

Table 4 Classification results on very-high-dimensional datasets
Dataset Precision Recall F1-measure Accuracy

ID LibSVM RF-C4.5 RF-ODT LibSVM RF-C4.5 RF-ODT LibSVM RF-C4.5 RF-ODT LibSVM RF-C4.5 RF-ODT
1 68.18 76.19 82.61 75.00 72.73 86.36 71.43 74.42 84.44 80.65 82.26 88.71

2 100 95.24 95.24 95.00 100 100 97.44 97.56 97.56 97.06 97.06 97.06

3 75.00 100 100 100 100 100 85.71 100 100 93.33 100 100

4 69.23 83.33 84.62 75.00 83.33 91.67 72.00 83.33 88.00 63.16 78.94 84.21

5 85.00 94.12 90.00 94.44 80.00 90.00 89.47 86.49 90.00 90.48 88.10 90.48

6 73.53 75.76 100 100 100 96.00 84.75 86.21 97.96 73.53 76.47 97.06

7 88.26 93.75 93.75 100 100 100 93.75 96.77 96.77 98.66 99.33 99.33

8 47.62 45.46 61.91 55.56 23.81 61.91 51.28 31.25 61.91 68.33 63.33 73.33

9 83.13 92.58 90.78 84.42 73.83 79.75 83.77 82.15 84.91 92.15 92.30 93.20

10 100 98.78 100 100 100 100 100 99.39 100 100 99.21 100

11 91.30 95.65 92.00 87.50 91.67 95.83 89.36 93.62 93.88 89.36 93.62 93.62

12 95.46 95.24 100 95.46 90.91 95.46 95.46 93.02 97.67 98.21 97.32 99.11

13 100 100 100 100 96.30 96.30 100 98.11 98.11 100 99.11 99.11
14 100 100 100 100 100 100 100 100 100 100 100 100

15 92.59 100 100 39.68 29.63 55.56 55.56 45.71 71.43 64.29 83.93 89.29

by dataset results (6 wins, 6 ties, 3 defeat, p-value = 0.5078) support those com-
ments. As results in table 8, the F1-measure obtained from RF-ODT is significantly
improved by 6.3 points on average compared with the F1-measure obtained from
RF-C4.5 (p-value = 0.0269). The comparison dataset by dataset gives a very signif-
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Conclusions

Support vector machines
Geometrical, mathematical models
SVM + kernel function => model
Training task: quadratic programming
Many optimization approaches 
High accurate models for text, images, handwritten characters, 
audio, etc. 
Handling many tasks: classification, regression and novelty 
detection
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Conclusions

Disadvantages
Blackbox models
Training task: quadratic program => expensive
Handle large datasets?
Unsupervised learning? 
Data types: binary or nominal type?
Tuning hyper-parameters?
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Future works

To do
Interpret the resulting SVM model: visualization, interactives 
approaches, etc.
Speed-up training task: parallel algorithms
Dealing with very large datasets
Incremental, parallel, distributed algorithms
Active learning algorithms
Handling symbolic data 
Fusing other approaches
Dealing with multi-class, imbalanced datasets, non-numeric data, 
clustering
Creating new kernel functions 55
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LibSVM

Data format
class-no attribute-i:value-i …. attribute-n:value-n

Example 
1 1:-0.555556 2:0.25 3:-0.864407 4:-0.916667 
1 1:-0.666667 2:-0.166667 3:-0.864407 4:-0.916667 
1 1:-0.777778 3:-0.898305 4:-0.916667
2 1:0.111111 2:-0.583333 3:0.322034 4:0.166667 
2 1:-1.32455e-07 2:-0.333333 3:0.254237 4:-0.0833333
3 1:0.222222 2:-0.166667 3:0.525424 4:0.416667 
3 1:0.888889 2:0.5 3:0.932203 4:0.75 
3 1:0.888889 2:-0.5 3:1 4:0.833333  
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LibSVM

Options
-s svm_type (default 0) : 0 (SVC), 1 (nu-SVC), 2 (one-class), 3 
(epsilon-SVR), 4 (nu-SVR)
-t kernel_type (default 2) : 0 (lin), 1 (poly), 2 (RBF), 3 (sigmoid)
-d degree (default 3) : Polynomial kernel function
-g gamma (default 1/#attr) : RBF kernel function
-c cost (default 1) : for C-SVC, epsilon-SVR, nu-SVR
-p epsilon (default 0.1) : for epsilon-SVR
-v num_fold : cross-validation
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Dataset (in 2D)
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Datasets

UCI (Asuncion & Newman, 2007)
*Spambase, 4601 examples, 57 attributes, 2 classes (spam, non)
*Image Segmentation, 2310 examples, 19 attributes, 7 classes
Landsat Satellite, 6435 examples (4435 for trainset & 2000 for 
testset), 36 attributes, 6 classes
Reuters-21578, 10789 examples (7770 for trainset & 3019 for 
testset), 29406 attributes, 2 classes (earn, rest)

Bio-medicales (Jinyan & Huiqing, 2002)
ALL-AML Leukemia, 72 examples (38 for trainset & 34 for 
testset), 7129 attributes, 2 classes (ALL, AML)
Lung Cancer, 181examples (32 for trainset &149 for testset), 
12533 attributes, 2 classes (cancer, normal) 63
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k-fold
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10-fold

it 1 :  

it 2 :

it 10 :

test train train train train train train train train train

testtrain train train train train train train train train

testtrain train train train train train train train train



Spambase (spam=1, non-spam=2)
protocol: 10-fold
Linear kernel
parameters: svm-train -t 0 -c 10 -v 10 spambase.scale

Result
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Image Segmentation
protocol: 10-fold
RBF kernel
parameters: svm-train -t 2 -g 0.0002 -c 10000 -v 10 segment.data

Result
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Landsat Satellite
sat.trn for trainset, sat.tst for testset
RBF kernel
parameters: svm-train -t 2 -g 0.001 -c 100000 sat.train sat.rbf

Result
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Reuters-21578 (earn=1, rest=2)
r.trn for trainset, r.tst for testset
linear kernel
parameters: svm-train -t 0 -c 1000 r.trn r.lin

Result
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ALL-AML Leukemia (ALL=1, AML=2)
allaml.trn for trainset, allaml.tst for testset
linear kernel
parameters: svm-train -t 0 -c 1000000 allaml.trn allaml.lin

Result
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Demo 

Lung Cancer (cancer=1, normal=2)
lung.trn for trainset, lung.tst for testset
linear kernel
parameters: svm-train -t 0 -c 1000000 lung.trn lung.lin

Result
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