Decision trees

Thanh-Nghi Do Can Tho University *dtnghi@cit.ctu.edu.vn*

> Can Tho Dec. 2019

Content

- Introduction
- Decision trees
- Decision forests

Content

Introduction

Decision trees

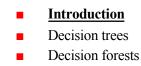
Decision forests

Top 10 Data Mining Algorithms Decision trees (Kdnuggets)

Here are the algorithms:

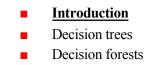
- 1. C4.5
- 2. k-means
- 3. Support vector machines
- 4. Apriori
- 5. EM
- 6. PageRank
- 7. AdaBoost
- 8. kNN
- 9. Naive Bayes
- 10. CART

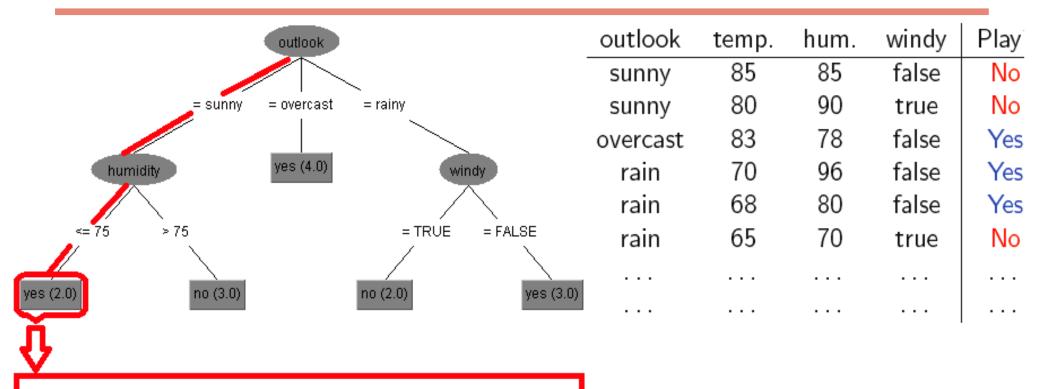
Introduction



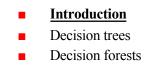
Decision trees

- Graphical representation of the classification procedure
- Intuition and comprehension for user
- Decision rules: if ... then ...
- Training time: short
- Dealing with classification and regression
- Handling different data types
- Applied into data analysis, bioinformatics, text mining, etc.
- Algorithms: C4.5 (Quinlan, 1993), CART (Breiman et al., 1984)





IF (outlook=sunny) and (humidity <= 75) THEN play=yes



Decision tree

- An internal node (non-terminal node, decision node): test on an attribute (variable, dimension, feature)
- A branch represents an outcome of the test
- A leaf node represents a class label or class label distribution
- A new example is classified by following a matching path to a leaf node
- A decision rule (if ... then ...) corresponds to a path from root to a leaf node

Content

Introduction

Decision trees

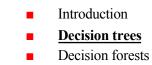
Decision forests

Decision trees

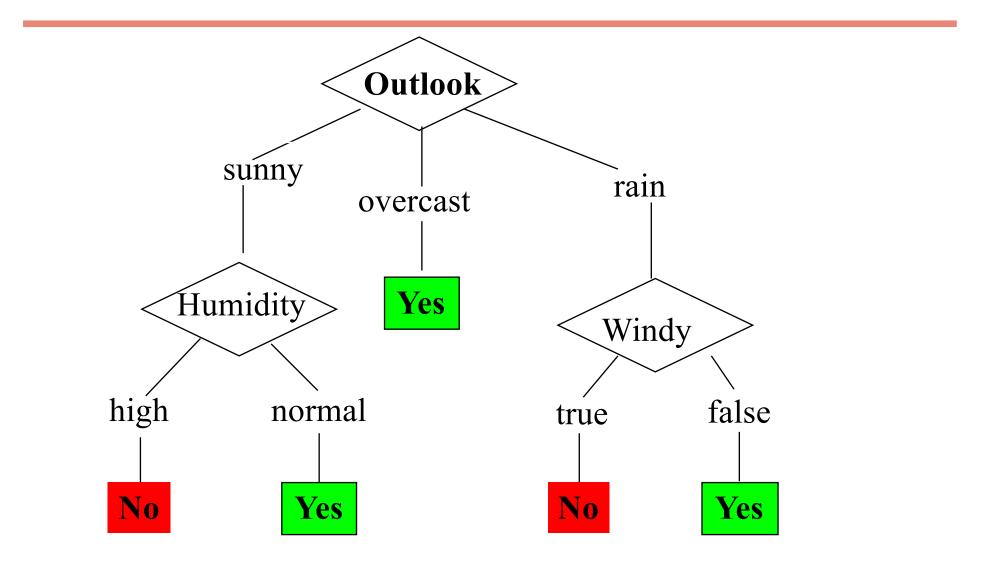
Decision forests

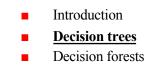
Training dataset Weather [Outlook, Temp, Humidity, Windy] → Play

Outlook	Temp	Humidity	Windy	Play
	-	-		-
Sunny	Hot	High	False	No
Sunny	Hot	High	True	Νο
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No



Decision tree for weather

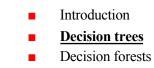




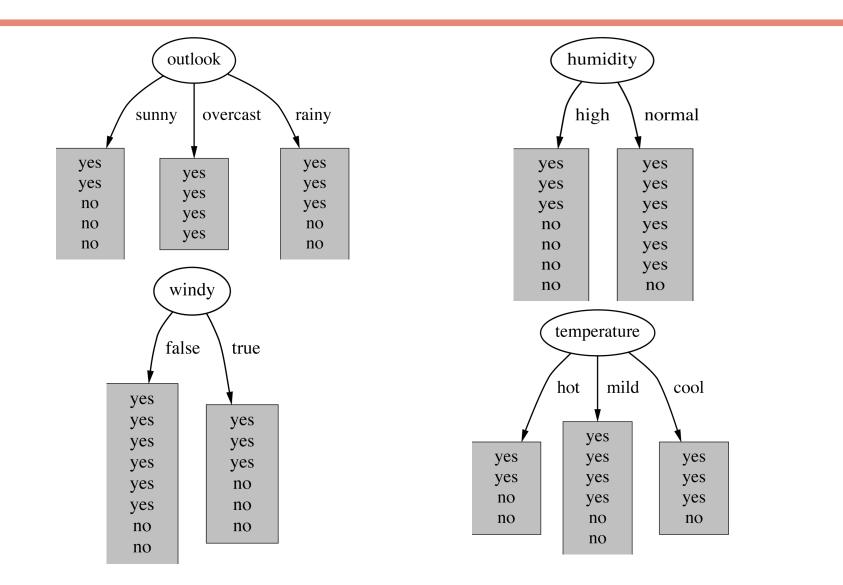
Decision trees

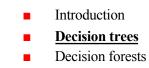
Learning algorithm (Top-down)

- At start, all training examples are at the root
- Partition the examples recursively by choosing one attribute each time
- At each node, available attributes are evaluated on the basis of separating the classes of the training examples
- A Goodness function is used for choosing the splitting attribute
- Typical goodness functions: information gain (ID3/C4.5), information gain ratio, gini index



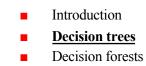
Choosing the splitting attribute?



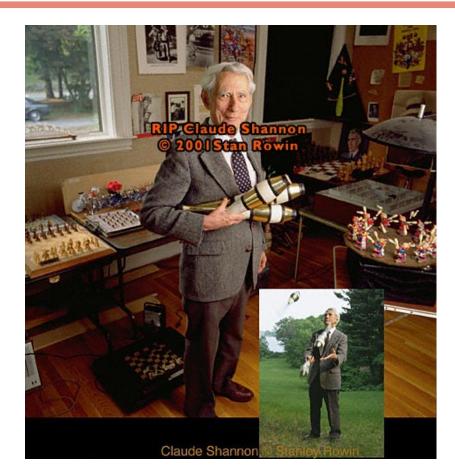


Choosing the splitting attribute?

- Which is the best attribute?
 - The one which will result in the smallest tree
 - Heuristic: choosing the attribute that produces the "purest" nodes
- Goodness functions
 - Impurity criterion
 - When node is pure, measure should be zero
 - When impurity is maximal (i.e. all classes equally likely), measure should be maximal
 - Measure should obey multistage property (i.e. decisions can be made in several stages)
 - Shannon entropy, Gini index



Entropy (C4.5)

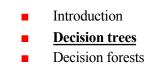


Claude Shannon

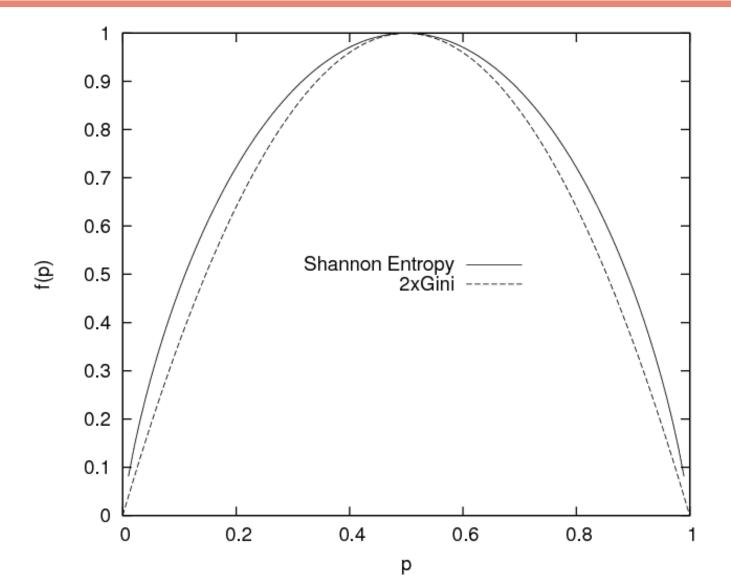
Born: 30 April 1916 Died: 23 February 2001

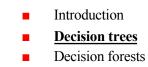
"Father of information theory"

entropy $(p_1, p_2, ..., p_n) = -p_1 \log p_1 - p_2 \log p_2 \dots - p_n \log p_n$



Goodness functions for impurity criterion





Computing information

Splitting node D (m examples) into k sub-partitions D_1 , ..., D_k (m_1 , ..., m_k examples) :

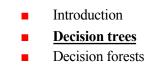
 $info(part./D) = (m_1/m) \times info(D_1) + ... + (m_k/m) \times info(D_k)$

Decision trees

Decision forests

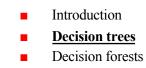
Training dataset Weather [Outlook, Temp, Humidity, Windy] → Play

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No



Attribute outlook

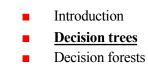
"Outlook" = "Sunny": $info([2,3]) = entropy(2/5,3/5) = -2/5\log(2/5) - 3/5\log(3/5) = 0.971$ bits $\theta * log(\theta) = \theta$ • "Outlook" = "Overcast": info([4,0]) = entropy(1,0) = -1log(1) - 0log(0) = 0 bits"Outlook" = "Rainy": $info([3,2]) = entropy(3/5,2/5) = -3/5\log(3/5) - 2/5\log(2/5) = 0.971$ bits Info(outlook): $info([3,2],[4,0],[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$ = 0.693 bits



Attribute outlook

Information gain of attribute outlook (information before split) – (information after split)

gain("Outlook") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693= 0.247 bits



Attribute humidity

"Humidity" = "High":

info([3,4]) = entropy $(3/7,4/7) = -3/7\log(3/7) - 4/7\log(4/7) = 0.985$ bits

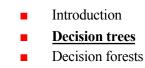
"Humidity" = "Normal":

info([6,1]) = entropy($\frac{6}{7}, \frac{1}{7}$) = $-\frac{6}{7}\log(\frac{6}{7}) - \frac{1}{7}\log(\frac{1}{7}) = 0.592$ bits Info(humidity):

info([3,4],[6,1]) = $(7/14) \times 0.985 + (7/14) \times 0.592 = 0.788$ bits

Gain informationnel de variable humidity

info([9,5]) - info([3,4],[6,1]) = 0.940 - 0.788 = 0.152



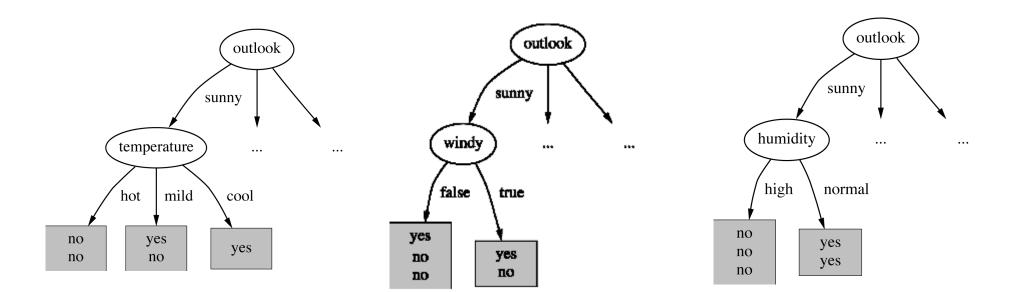
Information gain of attributes

gain("Outlook") = 0.247 bits gain("Temperature") = 0.029 bits gain("Humidity") = 0.152 bits gain("Windy") = 0.048 bits

Selection: max (gain) or min(info) => outlook

Introduction <u>Decision trees</u> Decision forests

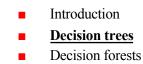
Branch **outlook = sunny** Choosing temperature, humidity, windy?



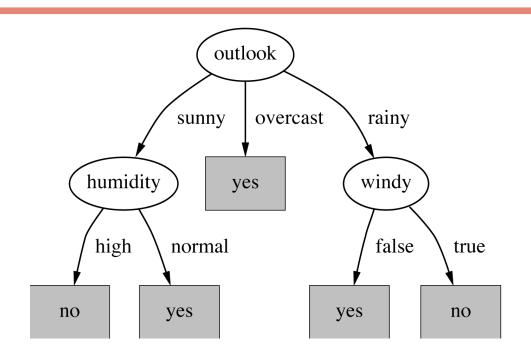
gain("Humidity") = 0.971 bits

gain("Temperature") = 0.571 bits

gain("Windy") = 0.020 bits



Resulting tree



Assign the class to a leaf node (terminal node): majority class



Gini (CART)

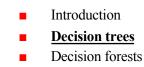
A node D with n classes (relative frequencies $p_1, p_2, ..., p_n$)

$$Gini(D) = 1 - \sum_{i=1}^{k} p_i^2$$

Splitting node D (m examples) into k sub-partitions D_1 , ..., D_k (m_1 , ..., m_k examples) :

 $\operatorname{Gini}(\operatorname{part.}/\operatorname{D}) = (m_1 / m) \times \operatorname{Gini}(D_1) + \ldots + (m_k / m) \times \operatorname{Gini}(D_k)$

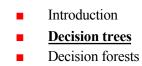
Selection: min(Gini)



Continuous attribute

Best split

- Sort examples by the values of the numeric attribute
- Binary split: halfway between values
- Computing information for left, right partitions
- Computing information for all split points



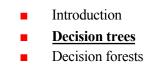
Continuous attribute

Attribute **temperature**

64	65	68		70		72	72	75	75	80	81 Yes	83	85
Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No
temperature < 71.5					temperature ≥ 71.5								
(left)				(right)									
yes/4, no/2				yes/5, no/3									

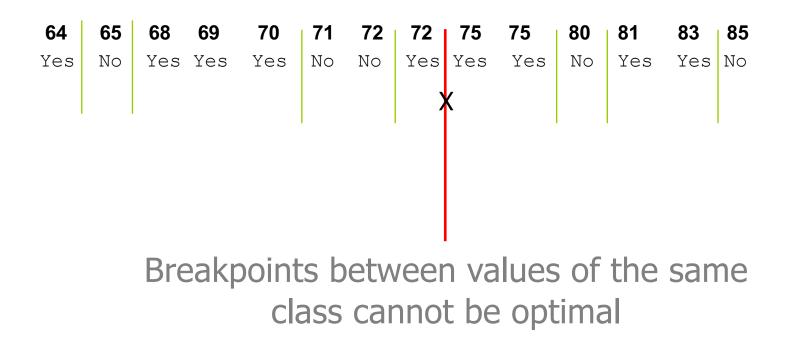
• Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3]) = 0.939 bits

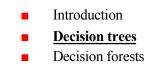
Computing information for all split points in one pass!



Continuous attribute

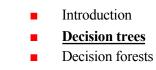
Heuristic (Fayyad & Irani, 1992): only needs to be evaluated between points of different classes





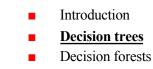
Overfitting

- Decision tree model fits the training data too precisely usually leads to poor results on new data
- Gap between training and test error
- Training error is very low or even zero
- Test error is higher than training error
- Approaches for avoiding overfitting
 - Pre-pruning: stop growing the tree earlier
 - Post-pruning: allow the tree to perfectly classify the training set, and then post-prune the resulting tree



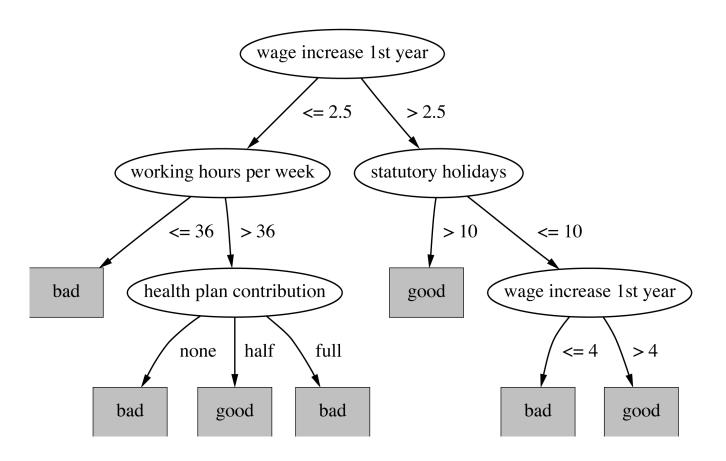
Post-pruning for avoiding overfitting

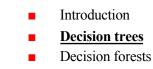
- Pruning
 - Heuristic: estimating error rates for sub-trees
 - Sub-tree replacement



Post-pruning for avoiding overfitting

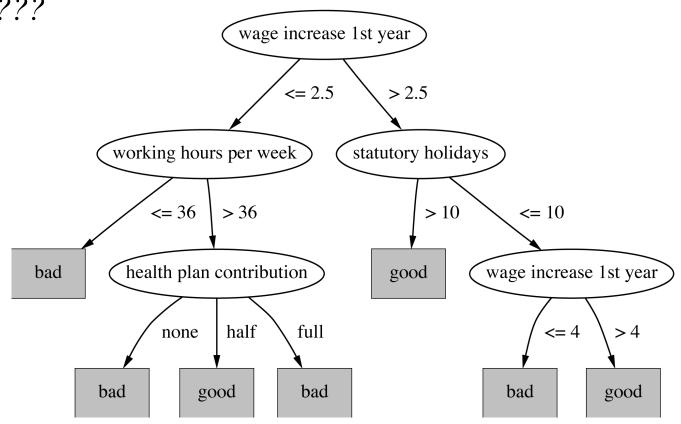
Bottom-up

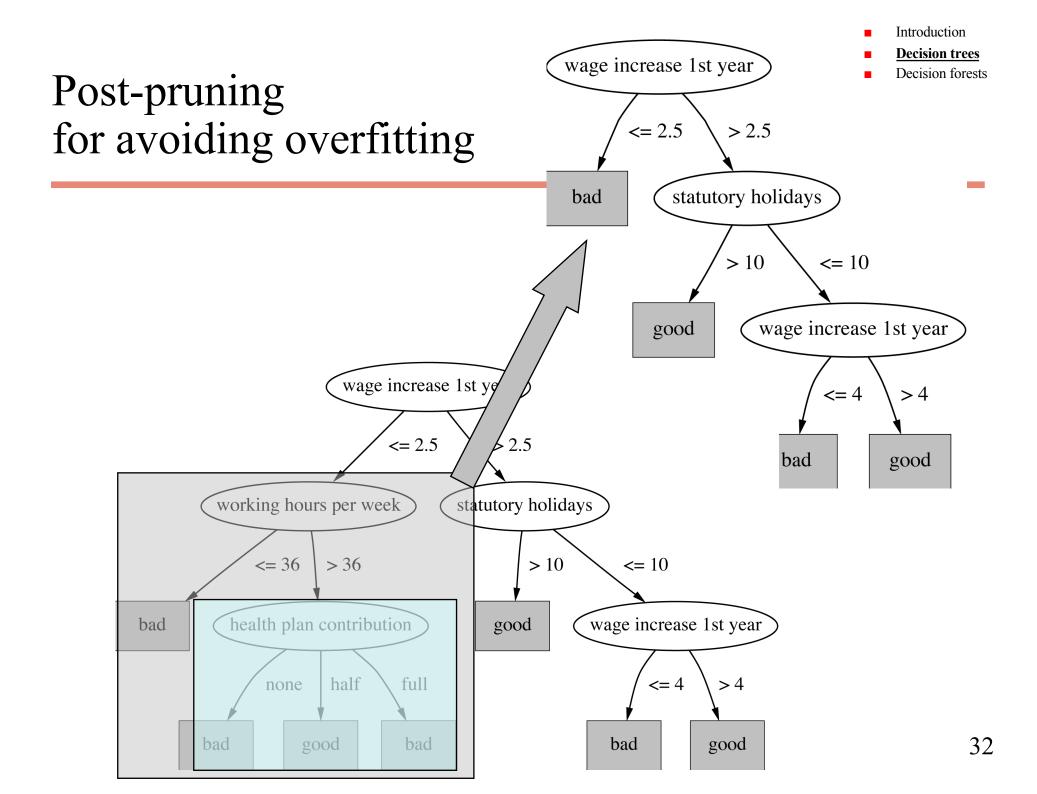


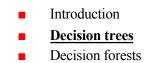


Post-pruning for avoiding overfitting

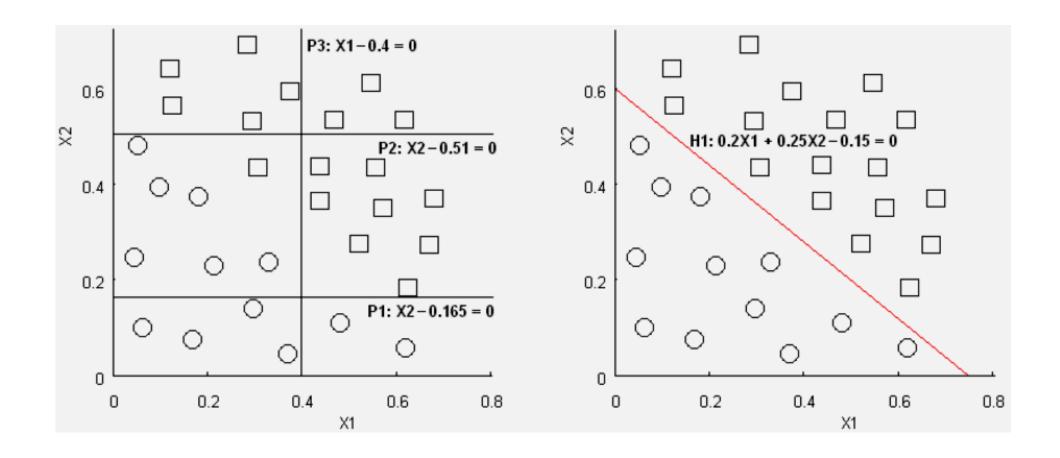
- Bottom-up
- Sub-trees???





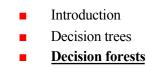


Multi-variate split



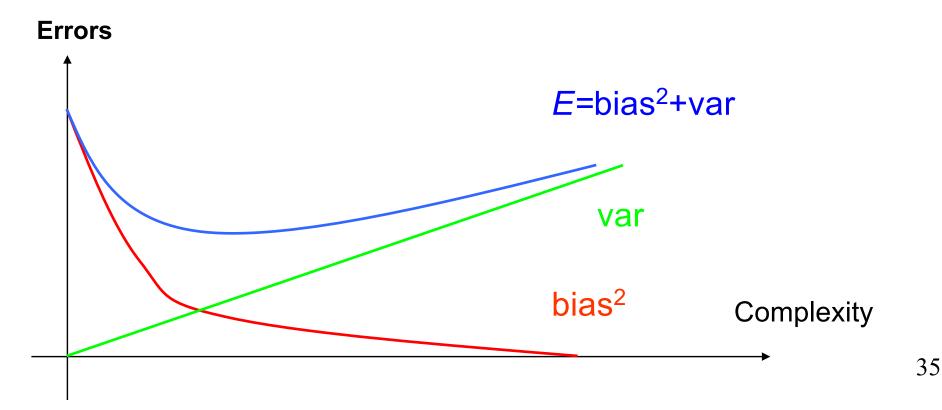
Content

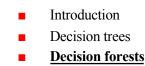
- Introduction
- Decision trees
- Decision forests



Bias-Variance dilemma

- $Error = Bias^2 + Variance$
 - Bias: error from erroneous assumptions in the learning algorithm
 - Variance: error from sensitivity to small fluctuations in the training set

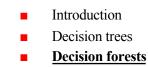




Ensemble-based learning

Principle

- Try to reduce bias and/or variance
- Combine weak classifiers (not too bad) and sufficiently diverse classifiers
- Weak classifier: decision tree, naive Bayes, etc.
- Bagging (Breiman, 1996)
- Boosting (Freund & Schapire, 1995), (Breiman, 1997)
- Random forests (Breiman, 2001)



Bagging (Breiman, 1996)

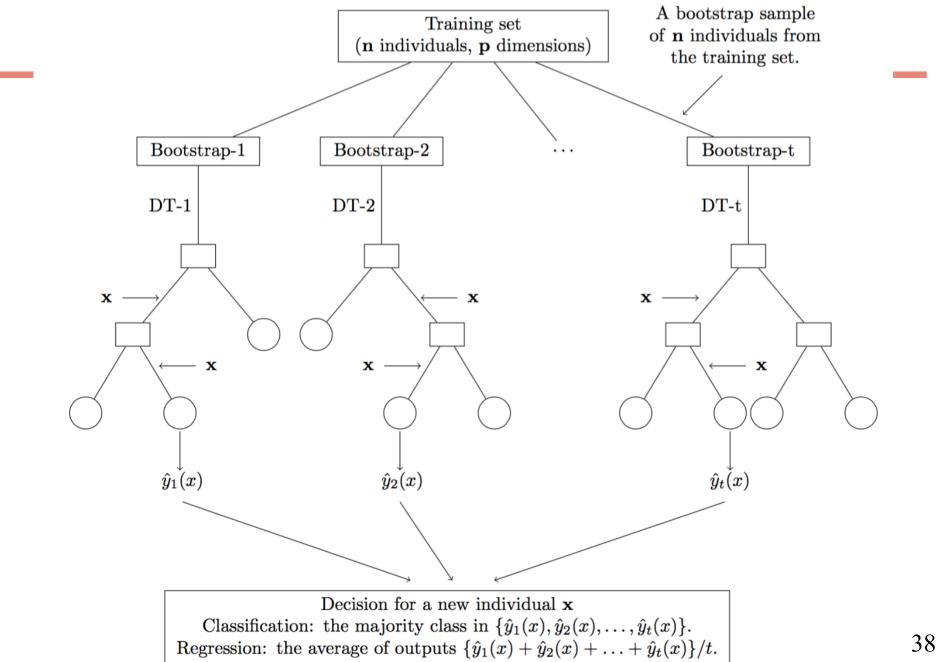
Principle

- Try to reduce variance without increasing too much bias
- Bagged trees: learning *T* decision tree models (weak classifiers) from different bootstrap samples
- Classification: majority vote
- Regression: average

IntroductionDecision trees

Decision forests

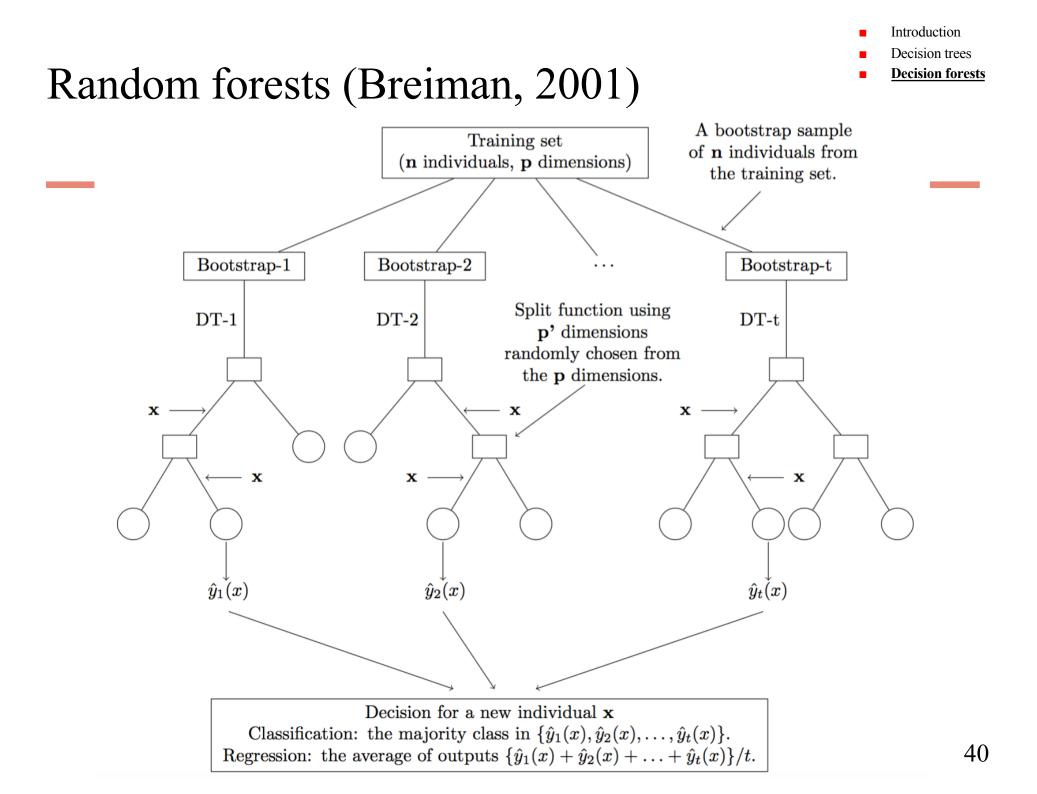
Bagging (Breiman, 1996)



Random forests (Breiman, 2001)

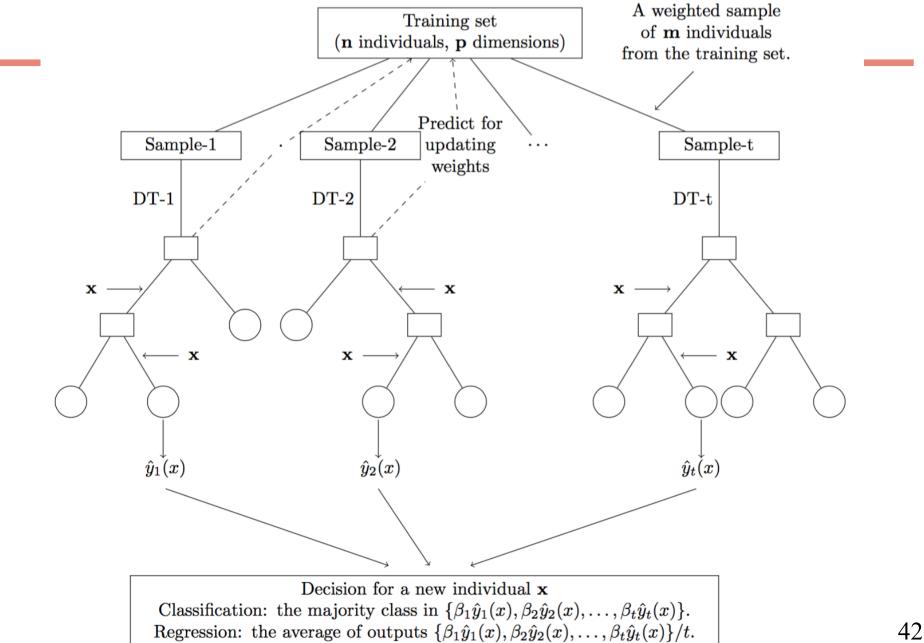
Principle

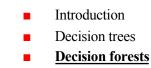
- Try to reduce variance and keep low bias
- Random forests: learning *T* random and unpruned decision trees (weak classifiers) from different bootstrap samples
- Unpruned tree (grown to maximum depth): low bias
- Random (bootstrap, random subset of attributes for choosing the best split): high diversity
- Classification: majority vote
- Regression: average

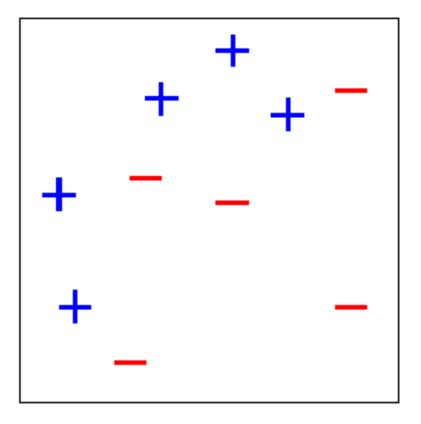


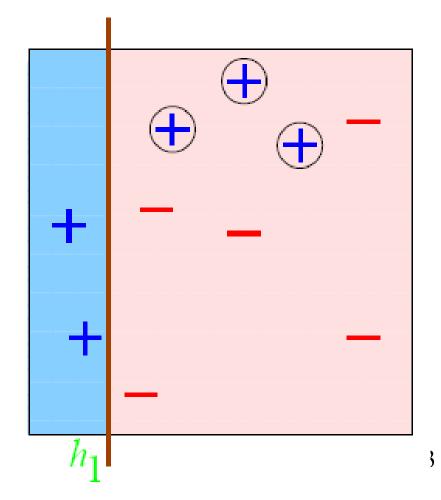
Principle

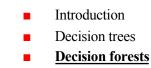
- Try to reduce bias and variance
- Boosting: improving classification correctness of weak classifiers (not too bad, more accurate than random guess), for example decision stumps
- Consecutively train *T* weak classifiers (trees) so that the i-th classifier concentrates mostly errors produced by previous ones
- Classification: majority vote (weighted predictions)
- Regression: average (weighted predictions)

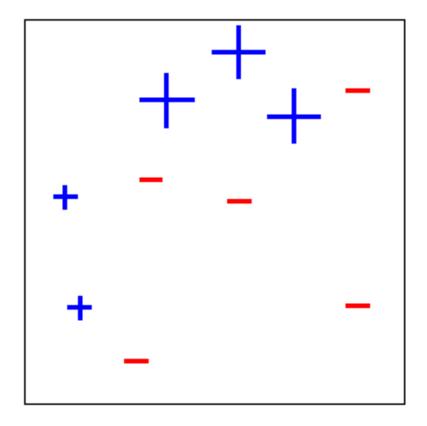


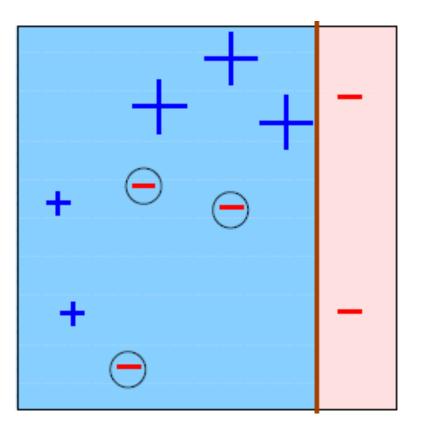


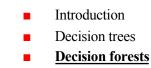


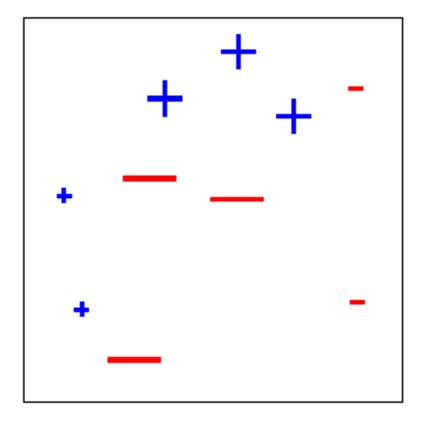


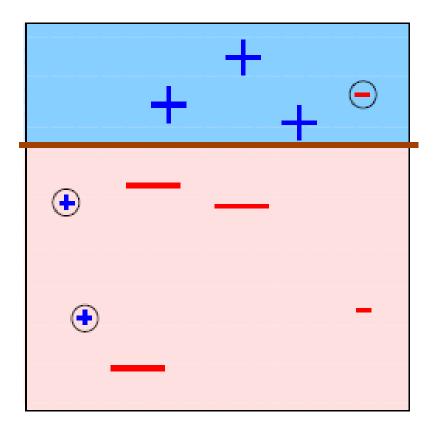


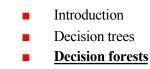


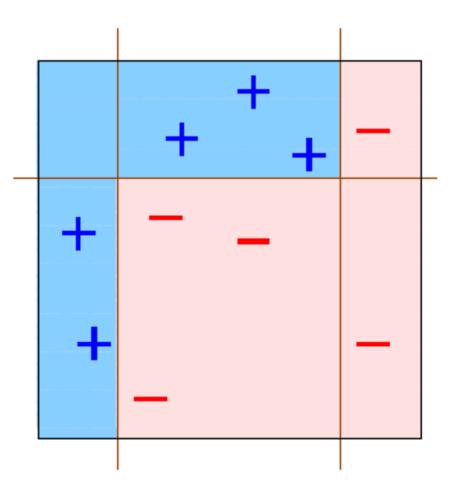


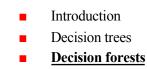












Comments

Ensemble-based learning

- Reducing bias and/or variance by combining different weak classifiers
- Blackbox models
- Bagging, random forests: can be parallelized
- Boosting, random forests: most accurate

